On Lie p-algebras of cohomological dimension one
نویسندگان
چکیده
منابع مشابه
Questions on Lie Algebras of Cohomological Dimension 1
A Lie algebra L is said to be of cohomological dimension 1, if H(L, M) = 0 for any L-module M . Due to the standard interpretation of the second cohomology group, this is equivalent to the condition that each exact sequence 0 → M → G → L → 0 splits. Of course, the cohomological dimension may be defined via standard devices of homological algebra – e.g. as the minimal length of the projective re...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولOn dimension of a special subalgebra of derivations of nilpotent Lie algebras
Let $L$ be a Lie algebra, $mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$. We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields. Also, we classi...
متن کاملLie algebras of small dimension
We present a list of all isomorphism classes of nonsolvable Lie algebras of dimension ≤ 6 over a finite field.
متن کاملNaturally graded p-filiform Lie algebras in arbitrary finite dimension
The present paper offers the classification of naturally graded p filiform Lie algebras in arbitrary finite dimension n . For sufficiently high n , (n ≥ max{3p − 1, p + 8}), and for all admissible value of p the results are a generalization of Vergne’s in case of filiform Lie algebras [11]. Mathematics subject classification 2000: 22E60, 17B30, 17B70
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2019
ISSN: 0019-3577
DOI: 10.1016/j.indag.2018.11.005